
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Digital Library: Arithmetic Cores RECRLAB@OU

1 Daniel Llamocca

Adder/Subtractor with carry in

INTRODUCTION
 This is an important circuit in computer arithmetic. In particular the ability to incorporate a carry in (or borrow in) is a crucial

requirement for specialized applications.
 A parameterized architecture is presented. Three parameters: DIRECTION, CIN_USED, and N. The circuit is described in

VHDL using a purely structural approach based on full adders and logic gates.
 The parameter N allows the selection of the size of the operation: N bits.
 The parameter DIRECTION has 3 values: i) UNUSED: circuit includes an 𝑎𝑑𝑑𝑠𝑢𝑏 input for addition/subtraction selection,

ii) ADD: circuit for only addition with carry in, and iii) SUB: circuit for only subtraction with an active-low borrow in.
 The parameter CIN_USED has 2 values: i) YES: here, the carry in (𝑐𝑖𝑛) input is considered, and ii) NO: here, the carry

in (𝑐𝑖𝑛) input is ignored; for addition, the default then is set 0, and for subtraction is 1.

ADDER/SUBTRACTOR FOR SIGNED NUMBERS
 The table allows for the circuit in the figure. This is the standard

adder/subtractor unit, where the 𝑐𝑖𝑛 input is an independent input.

 𝑐𝑜𝑢𝑡 = 𝑐(𝑁), 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑐(𝑁)𝑐(𝑁 − 1)
 Addition: The operation is straightforward: 𝐴 + 𝐵 + 𝑐𝑖𝑛

 Subtraction: We need to treat 𝑐𝑖𝑛 as an active-low borrow in. Thus, for
signed numbers: 𝐴 − 𝐵 = 𝐴 + 2𝐶(𝐵) + 𝑐𝑖𝑛 − 1.

 If 𝑐𝑖𝑛 = 0, there is a borrow in and 𝐴 − 𝐵 = 𝐴 + 2𝐶(𝐵) − 1.

 If 𝑐𝑖𝑛 = 1, there is no borrow, and 𝐴 − 𝐵 = 𝐴 + 2𝐶(𝐵).

Operation add_sub cin c(0)

ADDITION
0 0 0

0 1 1

SUBTRACTION
1 0 0

1 1 1

 The proposed approach works very well for multi-precision subtraction: this is when we partition the operation into two or

more adder/subtractor units. 𝑐𝑜𝑢𝑡 can be interpreted of as an active-low borrow out that propagates to the next unit.

 Note that if we were to treat 𝑐𝑖𝑛 as an active-high borrow in, 𝑐(0) would depend on 𝑐𝑖𝑛 and 𝑎𝑑𝑑𝑠𝑢𝑏. Moreover, the circuit

would not work well for multi-precision subtraction: the equation for 𝑐(0) in the second (leftmost) subtractor would be

different that for the first (rightmost) subtractor. The resulting circuit would become unnecessarily convoluted.

ADDER/SUBTRACTOR FOR UNSIGNED NUMBERS
 ADDITION: we use the exact same hardware (with carry in). 𝑐𝑜𝑢𝑡 is the carry out bit and it also signals overflow. The

overflow bit is only meaningful for signed operations.

 SUBTRACTION: We can use the subtractor for signed numbers. We need to zero extend the unsigned numbers to convert

them to signed numbers. The operation is then a (𝑁 + 1) −bit addition. Also, 𝑐(0) = 𝑐𝑖𝑛, which is an active-low borrow in.

+

N

S[N-1:0]

addsub

c(0) cin

N

A[N-1:0] B[N-1:0]

N

cout
c(N)+

N

S[2N-1:N]

c(0)

N

A[2N-1:N] B[2N-1:N]

N

cout c(N)

overflow

+

N

S

addsub

c(0) cin

N

A B

N

cout c(N)

overflow

N D
IR

E
C

T
IO

N

C
IN

_
U

S
E

D

0 An-1 An-2 ... A0 +

1 /Bn-1 /Bn-2 ... /B0

0 Sn-1 Sn-2 ... S0

cn cn-1 cn-2 c1 c0

0 An-1 An-2 ... A0 -

0 Bn-1 Bn-2 ... B0

0 An-1 An-2 ... A0 +

1 /Bn-1 /Bn-2 ... /B0

1 Sn-1 Sn-2 ... S0

cn cn-1 cn-2 c1 c0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Digital Library: Arithmetic Cores RECRLAB@OU

2 Daniel Llamocca

 If 𝐴 ≥ 𝐵, then 𝑆𝑛 = 0. According to the figure, this only happens if 𝑐(𝑁) = 1. The correct signed result is 0𝑆𝑛−1𝑆𝑛−2…𝑆0.
The correct unsigned result is 𝑆𝑛−1𝑆𝑛−2…𝑆0.

 If 𝐴 < 𝐵, then 𝑆𝑛 = 1. According to the figure, this only happens if 𝑐(𝑁) = 0. The correct unsigned result is

1𝑆𝑛−1𝑆𝑛−2…𝑆0. The unsigned result is 𝑆𝑛−1𝑆𝑛−2…𝑆0. This result is incomplete since a borrow out exists (𝑐(𝑁) = 0).

 𝑐𝑜𝑢𝑡 = 𝑐(𝑁), and 𝑐𝑜𝑢𝑡 can be interpreted as an active-low borrow out (as in the case for signed numbers). If 𝑐𝑜𝑢𝑡 = 1, then

there is no borrow out. If 𝑐𝑜𝑢𝑡 = 0, there is a borrow out.

 Since we are only considering 𝑆𝑛−1𝑆𝑛−2…𝑆0 and 𝑐(𝑁), we notice that we do not need to actually perform zero-extension in

the circuit: we just use the same adder/subtractor circuit and it is up to the user to treat the inputs as signed or unsigned.
If the inputs are treated as unsigned, the overflow output is meaningless.

